Oxford Cambridge and RSA

GCE

Physics A

Unit G485: Fields, Particles and Frontiers of Physics
Advanced GCE

Mark Scheme for June 2015

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

1. Annotations

Annotation	
BP	Meaning
BOD	Blank Page - this annotation must be used on all blank pages within an answer booklet (structured or unstruc-
tured and each page of an additional object where there is no candidate response.	

Abbreviations used in detailed mark scheme

Abbreviation	Meaning
$/$	alternative and acceptable answers for the same marking point
$(\mathbf{1)}$	Separates marking points
reject	Answers which are not worthy of credit
not	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
$\mathbf{(~)}$	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ecf	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

12. CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.

B marks: These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.

M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular M-mark, then none of the dependent A-marks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the \mathbf{C}-mark is given.

A marks: These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.

Note about significant figures and rounding errors:
If the data given in a question is to 2 sf, then allow answers to 2 or more sf. If an answer is given to fewer than 2 sf, then penalise once only in the entire paper. Any exception to this rule will be mentioned in the Guidance.

Penalise a rounding error once only in the entire paper.

Question			Answer	Marks	Guidance
1	(a)		A region in which a charged particle experiences a force / acceleration	B1	Allow: Where a charge experiences a force Allow: Force per (unit positive) charge Note: Must have reference to charge and force/acceleration for the mark
	(b)		Difference: Any one from - gravitational field / force is attractive (AW) - electric field / force can be either attractive or repulsive (AW) Similarity: Any one from: - Force / field (strength) inversely proportional to distance squared - Radial fields	B1 B1	Allow: Gravitational force is in the direction of the field / towards the mass Note: For the second bullet point, must have reference to both attractive and repulsive or 'towards charge' and 'away from charge' Allow: (Both) obey the inverse-square law (with distance) or (Both) have $F \propto 1 / r^{2}$ or $g \propto 1 / r^{2}$ and $E \propto 1 / r^{2}$ Allow: 'radius or separation' for 'distance'
	(c)		Any three from: - The electron is repelled by $\mathbf{B} /$ attracted by $\mathbf{A} /$ experience a force to the left - (Initially the) electron decelerates / slows down - It does not reach plate B/It reverses direction - When it returns to \mathbf{A} it has 4 eV (of KE) - It stops $2 / 3$ of the distance across the plates (AW)	$\mathrm{B} 1 \times 3$	
	(d)	(i)	$\begin{aligned} & E=60 \times 10^{3} \div 0.25 \quad \mid \quad E=2.4 \times 10^{5}\left(\mathrm{~V} \mathrm{~m}^{-1}\right) \\ & F=2.4 \times 10^{5} \times 1.5 \times 10^{-13} \\ & \text { force }=3.6 \times 10^{-8}(\mathrm{~N}) \end{aligned}$	C1 A1	Allow: $F=\left[1.5 \times 10^{-13} \times 60 \times 10^{3}\right] / 0.25$ for the first C 1 mark Allow: 1 mark for $7.2 \times 10^{-8}(\mathrm{~N}) ; d=12.5 \mathrm{~cm}$ used

Question	Answer	Marks	Guidance
(ii)	$\begin{aligned} & t=1.8 / 1.2(=1.5 \mathrm{~s}) \text { or } a=\frac{3.6 \times 10^{-8}}{8.0 \times 10^{-7}}\left(=4.5 \times 10^{-2} \mathrm{~m} \mathrm{~s}^{-2}\right) \\ & \left(s=u t+\frac{1}{2} a t^{2} \text { and } u=0\right) \\ & s=\frac{1}{2} \times 4.5 \times 10^{-2} \times 1.5^{2} \\ & \text { displacement }=5.1 \times 10^{-2}(\mathrm{~m}) \end{aligned}$	C1 C1 A1	Possible ecf from (d)(i) Note: No ecf within calculation if $t \neq 1.8 / 1.2$ Note: Answer to 3 sf is $5.06 \times 10^{-2}(\mathrm{~m})$
	Total	11	

Question			Answer	Marks	Guidance
2	(a)	(i)	$\begin{aligned} & (\text { weight }=\text { BIL }) \\ & 6.8 \times 10^{-5}=0.070 \times I \times 0.01 \quad \text { (Any subject) } \\ & I=0.097(\mathrm{~A}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	
		(ii)	The force on the cables will keep changing direction	B1	
	(b)	(i)	$\begin{aligned} & B Q v=m v^{2} / r \\ & r=\frac{m v}{B Q} \end{aligned}$	M1 A1	Allow e, q instead of Q Note: r must be the subject of this equation
		(ii)	$\begin{aligned} & \left(p=m v=B Q r, \mathrm{KE}=1 / 2 p^{2} / m\right) \\ & \mathrm{KE} \propto r^{2} \\ & \text { ratio }=\frac{4.8^{2}}{1.2^{2}} \\ & \text { ratio }=16 \end{aligned}$	C1 A1	Allow full credit for correct alternative approaches Allow 16: 1
			Total	7	

Question			Answer	Marks	Guidance
3	(a)		They are not fundamental particles because they consist of quarks	B1	Not: They can be sub-divided
	(b)		Any two from: electron / positron / neutrino / antineutrino	B1	Allow: muon / tau
	(c)	(i)	$\begin{aligned} & { }_{20}^{40} \mathrm{Ca} \\ & { }_{-1}^{0} \mathrm{e}+\bar{v}_{(\mathrm{e})} \quad \text { or } \quad \text { electron + (electron) antineutrino } \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow: ${ }_{-1}^{0} \beta$ but not β^{-}or e^{-}for the electron
		(ii)	There is a decrease in mass Energy (released) given by $(\Delta) E=(\Delta) m c^{2}$ or Binding energy increases Energy (released) is the difference between the binding energies (of Ca and K nuclei)		Ignore Δm being referred to as the 'mass defect' Allow: binding energy per nucleon increases
		(iii)	$\begin{aligned} & \lambda=\frac{0.693}{4.2 \times 10^{16}} \quad, \quad N=\frac{0.012}{100} \times \frac{4.5 \times 10^{-4}}{0.040} \times 6.02 \times 10^{23} \\ & A=1.65 \times 10^{-17} \times 8.127 \times 10^{17} \\ & \text { activity }=13(\mathrm{~Bq}) \end{aligned}$	C1 C1 A1	Allow: 1 mark for either $\lambda=1.65 \times 10^{-17} \mathrm{~s}^{-1}$ or $N=8.127 \times 10^{17}$ Note: Answer to 3 sf is 13.4 (Bq) Note: $1.3 \times 10^{3}(\mathrm{~Bq})$ scores 2 marks; division by 100 omitted
			Total	9	

Question			Answer	Marks	Guidance
4	(a)	(i)	Correct shape of (exponential) decay curve (labelled L)	B1	Note: The curve must show a gradient of decreasing magnitude as time increases and appear to have a finite value of V at $t=0$ Ignore any levelling of the curve or $V=0$ towards the end
		(ii)	Correct shape of curve (labelled H)	B1	Note: As (i) and this curve must show a smaller time constant than (i); the initial V can be different Note: One of the curves must be labelled
		(iii)	Correct explanation in terms of constant-ratio for V values for fixed intervals of t	B1	Allow V is halved every half-life; V decreases to 0.37 (of its initial value) after every time constant Note: This can be scored on a suitably labelled sketch graph in either (iii) or Fig. 4.1
	(b)	(i)	$\begin{aligned} & \text { (time constant } \left.=6.9 \times 10^{-6} \times 240\right) \\ & \text { time constant }=1.7 \times 10^{-3}(\mathrm{~s}) \end{aligned}$	B1	Note: Answer to $3 \mathrm{sf} 1.66 \times 10^{-3}$ (s)
		(ii)	$\begin{aligned} & \text { charge }=6.9 \times 10^{-6} \times 1.4\left(=9.66 \times 10^{-6} \mathrm{C}\right) \\ & (\Delta t=1 / 120=0.0083 \mathrm{~s}) \\ & \text { current }=\frac{6.9 \times 10^{-6} \times 1.4}{0.0083} \\ & \text { current }=1.2 \times 10^{-3}(\mathrm{~A}) \end{aligned}$	C1 C1 A1	Possible ecf from (b)(i) for value of total capacitance Note: Answer to 3 sf $1.16 \times 10^{-3}(\mathrm{~A})$ Allow: 2 marks for $9.66 \times 10^{-6} \times 60=5.8 \times 10^{-4}(\mathrm{~A}) ; \Delta t=$ 1/60 s used Allow: 2 marks for $9.66 \times 10^{-6} \times 240=2.3 \times 10^{-3}(\mathrm{~A}) ; \Delta t=$ 1/240 s used
		(iii)	The capacitors do not fully discharge (AW) Any one from: - Period (of switching) is (halved to) 4.2×10^{-3} (s) (and this time is comparable to the time constant) - The time constant (of the circuit) and period of mechanical switch are comparable / similar	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
			Total	9	

Question			Answer	Marks	Guidance
5	(a)		Observations: 1. Most of the alpha particles went straight / un-deflected through (the atom(s) / foil) (AW) 2. (Some of the) alpha particles were scattered / repelled / deflected through large angles (AW) Conclusions (QWC mark): - 1 showed that most of the atom is empty space and - 2 showed the existence of small / dense / positive nucleus	M1 M1 A1	Not 'reflected' Allow: The QWC mark even if 'alpha reflected at large angles' is mentioned in 2
	(b)	(i)	The aluminium nucleus has velocity / accelerates / moves to the right There is a repulsive force on the (aluminium) nucleus (to the right) / According to conservation of momentum the (aluminium) nucleus must move (to the right)	B1 B1	Allow: Moves away from the alpha particle
		(ii)	$\begin{aligned} & 8.0 \times 10^{6} \times 1.6 \times 10^{-19}=\frac{1}{2} \times 6.6 \times 10^{-27} \times v^{2} \quad \text { (Any subject) } \\ & \text { speed }=2.0 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Note: Answer to 3 sf is $1.97 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ Allow 1 sf answer $2 \times 10^{7}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
		(iii)	$\begin{aligned} & Q=13 e \text { or } q=2 e \text { or } F=\frac{Q q}{4 \pi \varepsilon_{0} r^{2}} \\ & 270=\frac{13 \times 1.6 \times 10^{-19} \times 2 \times 1.6 \times 10^{-19}}{4 \pi \times 8.85 \times 10^{-12} \times r^{2}} \quad \text { (Any subject) } \\ & \text { distance }=4.7 \times 10^{-15}(\mathrm{~m}) \end{aligned}$	C1 C1 A1	Allow: $F=k \frac{Q q}{r^{2}}$, where $k=9 \times 10^{9}$ Note: No credit for using Q and q as 13 and 2

Question	Answer	Marks	Guidance
(iv)	The strong force is attractive Correct explanation of size / direction of resultant force	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow: The strong force is repulsive M1 Correct explanation of size / direction of resultant force A1
	Total	12	

Question			Answer	Marks	Guidance
6	(a)		The (minimum) energy needed to separate / remove all the nucleons / protons and neutrons (to infinity)	B1	Allow: The energy released when (stationary) nucleons combine to form the nucleus Allow: The (minimum) energy required to break the nucleus into its (separate) nucleons Allow: binding energy $=$ mass defect \times speed of light ${ }^{2}$ Allow: 'Work (done)' in place of 'energy'
	(b)		$\begin{aligned} & \text { BE per nucleon }=4.53 \times 10^{-12} / 4 \\ & \text { BE per nucleon }=1.13 \times 10^{-12}(\mathrm{~J}) \end{aligned}$	B1	Allow 2 sf answer of $1.1 \times 10^{-12}(\mathrm{~J})$
	(c)		The helium nucleus has greater charge / The helium nucleus experience greater repulsive force Helium nuclei need to get close together (for the strong force to initiate fusion)	B1 B1	
	(d)		$\begin{aligned} & \left(\frac{1}{2} m v^{2}=\frac{3}{2} k T\right) \\ & \frac{1}{2} \times 6.6 \times 10^{-27} \times v^{2}=\frac{3}{2} \times 1.38 \times 10^{-23} \times 10^{8} \\ & \text { speed }=7.9 \times 10^{5}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow: $\mathrm{KE} \approx k T$; this gives an answer of $6.47 \times 10^{5}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
			Total	6	

Question			Answer	Marks	Guidance
7	(a)		Quantum / packet of (electromagnetic) energy Any one from: Can travel in a vacuum / has speed of $3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ in a vacuum / has no charge / has no (rest) mass / causes ionisation / has momentum	B1 B1	Allow: Particle of energy Allow: Travels at the speed of light / c in a vacuum
	(b)	(i)	$\begin{aligned} & \text { number per second }=4.8 \times 10^{-3} / 1.6 \times 10^{-19} \\ & \text { number per second }=3.0 \times 10^{16} \mathrm{~s}^{-1} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 0 \end{aligned}$	Note: This must be seen to gain a mark
		(ii)	$\begin{aligned} & \text { (incident power =) } 150 \times 10^{3} \times 4.8 \times 10^{-3} \\ & \text { or (incident power }=) 3.0 \times 10^{16} \times 150 \times 10^{3} \times 1.6 \times 10^{-19} \\ & (P=m c[\Delta \theta / \Delta t]) \\ & 0.99 \times 720=0.0086 \times 140 \times[\Delta \theta / \Delta t] \\ & \text { rate of temperature increase }=590\left({ }^{\circ} \mathrm{C} \mathrm{~s}^{-1}\right) \end{aligned}$	C1 C1 A1	Note an incident power of $720(\mathrm{~W})$ scores this C1 mark Note: Answer to 3 sf is $592\left({ }^{\circ} \mathrm{C} \mathrm{s}^{-1}\right)$ Allow: 2 marks for $598\left({ }^{\circ} \mathrm{C} \mathrm{s}^{-1}\right)$ or $600\left({ }^{\circ} \mathrm{C} \mathrm{s}^{-1}\right)$; 99% omitted Allow: 2 marks for $1.97 \times 10^{-14}\left({ }^{\circ} \mathrm{C} \mathrm{s}^{-1}\right) ; 3.0 \times 10^{16}$ omitted
		(iii)	$\begin{aligned} & \text { (photon energy }=\text { maximum KE of electron) } \\ & E=150 \times 10^{3} \times 1.6 \times 10^{-19} \quad \text { or } \quad E=2.4 \times 10^{-14}(\mathrm{~J}) \\ & 2.4 \times 10^{-14}=\frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{\lambda} \quad \text { (Allow any subject) } \\ & \text { wavelength }=8.3 \times 10^{-12}(\mathrm{~m}) \end{aligned}$	C1 A1	Allow: $E=720 / 3.0 \times 10^{16}$ Allow: 1 mark $8.3 \times 10^{-10}(\mathrm{~m}) ; E=2.4 \times \underline{10^{-16}}(\mathrm{~J})$ used
	(c)		Contrast material / iodine is injected (into the vessels) Any one from: The contrast material - large attenuation / absorption coefficient - has high Z (atoms) (and hence reveal the outline of the blood vessels)	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Not: barium for this B1 mark Not 'large μ '
			Total	10	

| Question | | Answer | Marks | Guidance |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{8}$ | (a) | Gamma radiation will pass through the patient (and hence
 can be detected) / beta particles will be absorbed by the
 patient (and hence cannot be detected)
 Gamma radiation is not (very) ionising / gamma radiation
 does little damage to cells / beta particles are (very) ionis-
 ing / beta particle damage cells | B1 | Allow: 'Body' in place of 'cells' |
| (b) | X-ray tube rotates around (the patient) / X-ray beam pass-
 es through the patient at different angles
 A thin X-ray beam is used
 Image(s) of slice(s) / (cross) section(s) through the patient
 are taken
 X-ray tube moves / spirals along (the patient)
 The signals / information / pulses / data (from the detec-
 tors) are used by the computer (and its software) to pro-
 duce a 3D image | B1 | Bot: Detector rotates around (the patient) | |

Question			Answer	Marks	Guidance
9	(a)		Change in the frequency / wavelength because of source / 'observer' moving	B1	Allow: There is blue / red shift because of relative motion between source and observer
	(b)		Any two from: 1. Ultrasound transducer / device / probe emits and detects ultrasound 2. The transducer / device / probe is placed at an angle (to the artery) 3. Ultrasound is reflected by the blood / cells QWC mark - change in frequency / wavelength (of the reflected ultrasound) is related to speed of blood	$\mathrm{B} 1 \times 2$ B1	Allow: speed of blood \propto change in frequency Allow: $\Delta f=2 v f \cos \theta / c$, where v is the speed of blood, $c=$ speed of ultrasound; no need to define the other labels Note: Do not award this mark if $\Delta f=f v / c$ is used to determine the speed v of the blood
	(c)	(i)	$\begin{aligned} & Z=\rho C \\ & \text { density }=1.66 \times 10^{6} / 1570 \\ & \text { density }=1060\left(\mathrm{~kg} \mathrm{~m}^{-3}\right) \end{aligned}$	B1	Allow: $1100\left(\mathrm{~kg} \mathrm{~m}^{-3}\right)$
		(ii)	$\begin{aligned} & \lambda=1570 / 2.4 \times 10^{6} \\ & \text { wavelength }=6.5 \times 10^{-4}(\mathrm{~m}) \end{aligned}$	B1	
	(d)		(fraction of intensity reflected $=) \frac{\left(Z_{2}-Z_{1}\right)^{2}}{\left(Z_{2}+Z_{1}\right)^{2}}$ (fraction of intensity reflected $=$) $3^{2} / 5^{2}(=0.36)$ intensity $=64 \%$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Note: 2 marks for 36% or 0.36
	(e)		Gel is used (between transducer and skin). The acoustic impedance / Z of gel is similar to that for skin hence less reflection (at the skin)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow: There is acoustic / impedance matching so less reflection Allow: Without the gel, there is large difference between acoustic impedances of air and skin, hence large reflection Note: Must have reference to reflection
			Total	11	

Question			Answer	Marks	Guidance
10	(a)		A core / 'star' left behind after a red giant (has shed its outer layers)	B1	Allow: It is the core of a red giant Allow: It is the remnant of a low-mass star Allow: A core / 'star' - supported by Fermi pressure / electron degeneracy (pressure) - with maximum mass of $1.4(4)$ solar masses / 1.4(4) $M_{0} /$ Chandrasekhar limit Not: It is a collapsing red giant
	(b)		$\begin{aligned} & (\text { parallax }=1 / d) \\ & d=0.0059^{-1}(\mathrm{pc}=169.49 \ldots . \mathrm{pc}) \\ & \text { distance }=0.0059^{-1} \times 3.26 \\ & \text { distance }=550 \mathrm{ly} \end{aligned}$	C1 A1	Allow other correct methods
	(c)	(i)	power per (unit) area or power/area	B1	Allow 'energy per (unit) area per unit time' Not: power per m^{2}
		(ii)	$\begin{aligned} & 1 \quad\left(\text { density }=\text { mass } / \frac{4}{3} \pi r^{3} \propto \text { mass } / r^{3}\right) \\ & \text { ratio }=\frac{12}{\left(1.1 \times 10^{5}\right)^{3}} \\ & \text { ratio }=9.0 \times 10^{-15} \\ & \mathbf{2} \quad(\text { power }=\text { intensity } \times \text { surface area }) \\ & \text { power } \propto T^{4} r^{2} \\ & \text { ratio }=\frac{4300^{4} \times\left(1.1 \times 10^{5}\right)^{2}}{25000^{4}} \\ & \text { ratio }=1.1 \times 10^{7} \end{aligned}$	C1 C1 C1 A1	Allow: 9.0×10^{-15} : 1 Allow: 1 sf answer of 9×10^{-15} Note: Answer to 3 sf is 1.06×10^{7} Allow: 1.1×10^{7} : 1
			Total	9	

Question			Answer	Marks	Guidance
11	(a)		recessional speed / velocity of galaxy is proportional to its distance (from us)	B1	Allow: recessional speed of galaxy $=$ Hubble constant \times distance
	(b)	(i)	$v=1010\left(10^{3} \mathrm{~m} \mathrm{~s}^{-1}\right)$ d in the range 4.47 to $4.54\left(10^{23} \mathrm{~m}\right)$	$\begin{aligned} & \mathrm{B} 1 \\ & \text { B1 } \end{aligned}$	Note: Answer to 4 sf is $1014\left(10^{3} \mathrm{~m} \mathrm{~s}^{-1}\right)$
		(ii)	$\begin{aligned} & \text { (Straight line drawn through the points } \\ & \text { gradient } \left.=\text { Hubble constant, } H_{0}\right) \\ & \text { gradient }=2.24 \times 10^{-18}\left(\mathrm{~s}^{-1}\right) \\ & \text { age }=\left(2.24 \times 10^{-18}\right)^{-1} \\ & \text { age }=4.46 \times 10^{17}(\mathrm{~s}) \\ & \text { age }=1.4 \times 10^{10}(\mathrm{y}) \end{aligned}$	C1 C1 A1	Allow: gradient in the range 2.21 to 2.27×10^{-18} Allow ecf from incorrect value of the gradient Allow: A maximum of 2 marks if values from the table are used instead of the gradient of the line drawn on Fig. 11.2 Note: No marks for a bald 14 billion years
	(c)		Big bang: Creation / birth / expansion / evolution of the universe or The universe was very hot / very dense / singularity (at the start) Evidence: Any two from: - Microwave / background radiation / 3 K (or 2.7 K) - Existence of (primordial) helium / lithium / lighter elements - Tiny variation (or ripples) in (background) temperature	B1 $\mathrm{B} 1 \times 2$	Not: More matter than antimatter / baryonic asymmetry
			Total	9	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations
is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

